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In 1970, we reported the first [6 + 41 cycloadditions of tropone to ful~enes.~" Although 

a rapid 1,5-sigmatropic shift precluded isolation of the [sF + 4T] adduct, $, the intermediacy 

of this compound was shown unequivocally in one case by deuterium labeling studies and structural 

elucidation of the 2:l adducts of tropone and various fulvenes. We also considered the possi- 

bility that the [4F + sT1 adduct , 2, could be the kinetically controlled product of cycloaddition, 

but that 2 was rapidly converted to & by a [3,3]-sigmatropic shift, precluding detection of the 

primary adduct, 2. 
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available at that time, which we interpreted as circumstantial evidence The only evidence 

against the intermediacy of the [4F + sT] adduct , 2, was the stereochemistry of cycloadducts of 

6-monosubstituted fulvenes.' Only derivatives of J.. and J.. were formed from 6-methyl or 6-phenyl 

fulvenes. This requires that the Cope rearrangements, if adducts 2 are involved at all, proceed 

through transition states with the methyl or phenyl substituent in quasi-axial, rather than 

quasi-equatorial, conformations.2 Since Cope rearrangements are known to prefer transition 

states with quasi-equatorial substituents,3 we concluded that ,2 was not an intermediate in these 

reactions. 
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In 1972, Tanida and coworkers isolated the [SF + 4T] adduct, !ii, upon reaction of dimethyl- 

iaohenzofulvene with tropone.' Several years later, Warrener and Paddon-Row found that the 

14' + sT1 adduct, _4g, was the initial adduct formed in this reaction, but that f?4 slowly 

rearranges to zt? in solution at room temperature.5 By analogy, Paddon-Row and Warrener concluded 

that the monocyclic fulvenes also give the [4' + sTl adducts, 2_, as primary products.5-8 Since 

our stereochemical reasoning involved a gross extrapolation from acyclic systems, we decided to 

reopen the question of mechanism by preparing the [4P + sT1 adduct , &, of phenylisobenzofulvene 

and tropone, and to determine the stereochemistry of an authentic Cope rearrangement of a close 

analog of the unobserved +J. 

When the previously unknown 8-phenylisobenzofulvene was generated, in tropone as solvent at 

room temperature,' thin layer chromatographic monitoring of the reaction mixture revealed forma- 

tion of a single adduct, ib, and subsequent development of a second adduct, zb_. Column chroma- 

tography of the mixture obtained after 20 hours gave a mixture of $ and %, as well as a pure 

sample of #, mp 150-152*. Adduct $ could not be isolated in pure form because of its ready 

thermal conversion to @, apparently accelerated by silica gel. 
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However, spectroscopic studies 

That is, this adduct has a car-bony1 

0: R= R‘= Me 

b: R= Ph, R’= t-l 

of the mixture of ffb_ and :k revealed the structure of 5%. 

stretching absorption at 1715cm-', as expected for the 

bridged carbonyl in Sk, and nmr resonances at 3-4.46 due to four aliphatic protons, and at 5.5- 

6.26 due to five vinyl protons, in good agreement with those found for $g.' Upon standing in 

solution at room temperature, the resonances assigned to fsk disappeared, while those assigned to 

zk grew in intensity. 
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The resonances due to H-1 and H-8 could be readily differentiated from those due to H-2 and 

H-7, due to the magnitude of the splittings observed. Thus, H-8 is coupled to both of the 

vicinal olefinic protons (H-9 and H-13) by 8.9 Hz, while H-l has only one large coupling, 8.2 Ha, 

to H-12. H-l and H-2 are coupled by 3.8 Hz, indicating the position of the H-l resonance. The 

H-7 resonance is not fully resolved, but couplings of 1.8 Hz to both H-5 and H-8 were shown by 

double resonance experiments. There is also a 4-bond coupling of less than 1.5 Hz between H-7 

and H-2. The small magnitude of the vicinal coupling, Jr 8 = 1.8 Hz, is indicative of the stereo- 
, 

chemistry shown in the drawing of ?a. That is, in ,5b the dihedral angle between H-7 and H-8 is 

approximately BOO, whereas the stereoisomer having an endo phenyl group would have a corresponding 

dihedral angle of about 30°, and consequently a larger J, a. 
, 

A comparison of the chemical shifts of 55 with those of zi, like the similar comparison made 

earlier for derivatives of $_9 and $$,2 provides further evidence for the exo nature of the phenyl - 

group in 5b. Thus, in benzene-da, the resonances in zb, due to H-8, H-9, and H-10 are at lower 

field by 0.46, 0.15, and 0.22 ppm, respectively, than the corresponding resonances of &. 

Thus, 5~ undergoes a Cope rearrangement via the transition state in which the phenyl group 

assumes the quasi-axial conformation. Our previous contention that the phenyl group would adopt 

a quasi-equatorial conformation in the analogous Cope rearrangement of 2d, to ;c must be incorrect, 

implying that the formation of Id in reactions of phenylfulvene with tropone is consistent with 
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initial formation of 29 and subsequent Cope rearrangement to lg. Although there is still no 

direct evidence for formation of I_, analogy with the formation of the positively identified (i 

from isobenzofulvenes leads us to concur with Paddon-Row and Warrener that 2 is most probably 

the initial adduct of tropone with monocyclic fulvenes. 
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